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We study the sum of many independent spike trains and ask whether the resulting spike train has Poisson
statistics or not. It is shown that for a non-Poissonian statistics of the single spike train, the resulting sum of
spikes has exponential interspike interval �ISI� distributions, vanishing the ISI correlation at a finite lag but
exhibits exactly the same power spectrum as the original spike train does. This paradox is resolved by
considering what happens to ISI correlations in the limit of an infinite number of superposed trains. Implica-
tions of our findings for stochastic models in the neurosciences are briefly discussed.
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Point processes and their associated spike trains play an
important role in many fields such as physics �for instance,
the shot noise in semiconductors� and neurobiology �action
potentials of nerve cells�. A basic mathematical object occur-
ring in applications is the superposition of many independent
spike trains. Such a problem is encountered, for instance, for
a neuron receiving action potentials from about 104 other
neurons. Taking the presynaptic �input generating� neurons
to be independent and assuming a linear summation of the
postsynaptic potentials caused by the input spikes, the effec-
tive input to the postsynaptic neuron is exactly given by the
sum of single spike trains.

It has been widely assumed in recent theoretical work
�see, e.g., �1,2�� that the superposition of a large number of
independent non-Poissonian spike trains results in a Poisso-
nian spike train, i.e., in a spike train with exponential inter-
spike interval �ISI� probability density functions �PDF�, van-
ishing ISI correlations �k=0, and a flat power spectrum of
the spike train. Here we show that although the pooled spike
train’s ISI indeed follows an exponential PDF and ISI corre-
lations at a specific lag vanish �which is the apparently
unique signature of a Poisson process from the ISI statistics
point of view�, the pooled spike train shares the nonflat spec-
tral statistics of the single process and thus, it is not a Pois-
son process. We resolve this paradox by showing that the
pooled spike train is not a renewal process �3�, although by
common measures it may look like one.

We consider independent stationary stochastic spike trains
given by a sum of � functions

xn�t� = � ��t − tn,i� . �1�

For simplicity we assume that the single spike train xn�t� is a
renewal process, i.e., the interspike intervals �ISIs� between
successive spikes

Tn,i = tn,i − tn,i−1 �2�

are uncorrelated among each other. This implies that the se-
rial correlation coefficient, given by

�k =
Š�Tn,i − �Tn,i���Tn,i+k − �Tn,i+k��‹

Š�Tn,i − �Tn,i��2
‹

�3�

vanishes at all finite lags k. We note that a renewal process is
completely characterized by the probability density of the ISI
p�Ti�. In particular, the power spectrum of the spike train

S�f� = �
−�

�

d� e2�if��x�t�x�t + ��� �4�

�here defined as the Fourier transform of the spike train cor-
relation function �x�t�x�t+���� can be expressed by the Fou-
rier transform of the ISI density p̃�f� as follows �4,5�:

Srenewal�f� = r
1 − 	p̃�f�	2

	1 − p̃�f�	2
�f � 0� . �5�

Here, r denotes the stationary firing rate, i.e., the stationary
mean of the spike train r= �x�t��, which equals the inverse
mean ISI r=1/ �T�.

The Poisson process is a special renewal process with an
exponential ISI density and a flat power spectrum of the
spike train

ppoi�T� = r exp�− rT�, Spoi�f� = r . �6�

Since the ISI density determines uniquely the statistics of a
renewal process we may conclude as follows: if a process is
renewal and possesses an exponential ISI density, it is a Pois-
son process and its power spectrum has to be flat �as can be
readily checked using Eq. �5��.

In what follows, we will use for illustration a non-
Poissonian renewal process xn�t� the ISIs of which are dis-
tributed according to the density

p��T� = 4r2T exp�− 2rT� . �7�

This density has a unimodal shape with a peak at finite ISI
�see Fig. 1, midpanel in the first row�. The spike rate is given
by r and the single ISI can be generated as a sum of two
exponentially distributed random numbers with mean value
1/ �2r�. The power spectrum of the spike train can be ob-
tained from Eq. �5� and reads

S� = r
1 −
2r2

4r2 + ��f�2� . �8�

The spectrum is not flat but shows a dip at low frequencies
and saturates in the high frequency limit at the firing rate r
�see Fig. 2, left upper panel�.

In the following we focus on the superposition of the
trains xn�t� with n=1, . . . ,N. We rescale this sum by the
number N of pooled spike trains, i.e., we consider
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X�t� =
1

N
�
n=1

N

xn�t� �9�

and the question we pose is whether for N→� the pooled
train X�t� approaches a Poisson process with amplitude 1/N
and rate Nr. In order to check this we will study the prob-
ability density p�Ti� of a ISI in X�t� defined by Ti= ti− ti−1,
where ti and ti−1 are two successive firing times in the pooled
spike train. We also ask whether the linear correlations be-
tween the intervals Ti and Ti+k are zero ��k=0 for k�0� or
not, i.e., whether X�t� is a renewal process or a nonrenewal
process. Finally, we look at the power spectrum of X�t�
which should tend to Spoi=r /N if X�t� tends to a Poisson
process.

Why a Poissonian statistics for X�t� may be naively ex-
pected. One way to simulate a Poissonian spike train is as
follows: Distribute N points uniformly and independently
over an interval �0,T�. Over a much smaller interval �0,T��
�with T�	T�, the resulting point process will have a Poisso-
nian statistics.

If we sum a number of independent non-Poissonian spike
trains, then on time scales much smaller than a ISI of the
single process xn�t�, we generate locally a Poisson process
�3� exactly in the way described above. Consider the pooled
spike train Eq. �9� for large N. The ISI of the single process
Tn,i will be split into much smaller subintervals Ti� �the ISIs
of the superposed spike train� in a completely random fash-
ion. Adding more spike trains we further subdivide these
small ISIs and thus remove all correlations present in the
spike train. The linear correlations at an arbitrary lag, for
instance, are expected to vanish, i.e., �k→0 as N→�. The
resulting spike train seems to converge to a renewal process
with exponential ISI density—in other words: to a Poisson
process.

This line of our somewhat vague reasoning seems to be
supported by the numerical results for the ISI statistics
shown in Fig. 1.

For N=1 �first row�, the ISI density �midpanel� corre-
sponds to that of the single process given in Eq. �7� �dashed
line in the figure�; serial correlations between intervals �right
panel� vanish because xn�t� is a renewal process.

For N=2 �second row� the ISI density deviates from Eq.
�7� even if we rescale the interval such that the mean interval
is the same. Surprisingly, by adding the two independent
spike trains, we introduce serial correlations in subsequent
intervals �cf. the right panel of the second row�, i.e., X�t� is a
nonrenewal process �for further results on small N, see Ref.
�4��. The �linear� correlations extend over two successive
intervals and are negligible for lags larger than lag one.

By adding more spike trains �third and fourth rows�, the
interval density is getting closer to an exponential PDF �mid-
panels, theory is shown by the solid lines�, in fact, for N
=100 �fourth row� deviations from the exponential function
are extremely small. The serial correlations are getting
weaker but extend over more lags. The correlation coeffi-
cient �k for N=100 is very small at all lags and concluding
from the linear correlations as measured by the serial corre-
lation coefficient one is tempted to state that the process X�t�
approaches a renewal process in the limit of N→�.

As sketched above, it is intuitively clear that the correla-
tions between two intervals Ti and Ti+k will decrease further
as N grows. So any linear or nonlinear correlations for a
certain lag k will vanish as we let N go to infinity. Studying
only the ISI statistics �PDF of and correlations between in-
tervals�, we may conclude that X�t� approaches a renewal
process with exponential ISI density—that means X�t� ap-
proaches a Poisson process. This line of arguments was
used, for instance, in Refs. �1,2�.

Why X�t� is not a Poisson process in the limit
N→�.—Let us consider the correlation function of X�t�:

KX��� = �X�t�X�t + ��� − �X�t���X�t + ���

=
1

N2�
n,l

�xn�t�xl�t + ��� − �xn�t���xl�t + ���

=
1

N2�
n

��xn�t�xn�t + ��� − �xn�t���xn�t + ����

+
1

N2 �
n�l

��xn�t�xl�t + ��� − �xn�t���xl�t + ���� .

FIG. 2. Scaled power spectra of spike trains for different num-
bers N of superposed processes xn�t� with PDF Eq. �7� and r=1.
Simulation results �symbols� obtained by averaging the spectra of
103 spike trains X�t� of length 218 with time step 
t=10−2 are
compared to theory �black lines� according to Eqs. �11� and �8�. For
clarity, only a fraction of the simulation data is shown, i.e., the
actual frequency resolution was much higher than shown. The
single processes xn�t� were generated as explained in Fig. 1. Mul-
tiple spikes occurring in the rather large time bin were added up;
this only affects the power spectrum at much higher frequencies
than shown here.

FIG. 1. Simulation results for the ISI statistics of X�t� with xn�t�
being a renewal process with PDF according to Eq. �7� and r=1.
The simulation was performed for 217 spikes. Left column: the
summed spike train X�t� for different numbers N of processes, the
height of a single spike is �N
t�−1 where we chose an arbitrary
value 
=10−4 �temporal resolution was actually larger�; two subse-
quent ISIs �Ti and Ti+1� are indicated in the top panel. Midcolumn:
the PDF of a single ISI of X�t�, scaled with N �gray area�; the PDF
of the single spike train according to Eq. �7� �dashed line�; the
exponential PDF r exp�−rT� of a Poisson process �solid line�. Right
column: the serial correlation coefficient of the ISIs of X�t�.
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Since the spike trains are independent the term in the last line
drops out and we obtain

KX��� =
1

N
Kx��� . �10�

This elementary calculation is analogous to a well-known
statistical fact: the variance of the sum of independent ran-
dom variables equals the sum of the variances of the vari-
ables. Likewise, the correlation function of independent sto-
chastic processes equals the sum of the correlation functions
of the processes.

For the power spectrum which is the Fourier transform of
the autocorrelation function we obtain from Eq. �10�

SX�f� =
1

N
Sx�f� . �11�

This means that the power spectrum of the summed spike
train is the same �apart from rescaling by 1/N� as that of the
single spike train xn�t�. This is confirmed in Fig. 2 for xn�t�
being the renewal process with density Eq. �7�. We can also
compare all expressions with the analytical result Eq. �8�; the
dip at low frequencies which was present for the single pro-
cess xn�t� is conserved for all numbers N used in the simu-
lations.

Generally, if we start with a non-Poissonian process for
xn�t� we will keep this non-Poissonian spectral statistics in
X�t�. Hence, X�t� is not a Poisson process �which needs to
have a flat “white” power spectrum for all frequencies� in
contradiction with what was inferred above.

Resolution of the paradox and conclusions. The paradox
is as follows: the ISI statistics �PDF of the ISI and serial
correlation coefficient� as well as intuitive reasoning seems
to tell us that X�t� is a renewal process with exponential
density of the ISI. Since a renewal process is completely and
uniquely characterized by the PDF of the ISI, this tells us
that the process is a Poisson process. On the other hand, we
could show with a simple calculation that the power spec-
trum of X�t� is not flat as expected and necessary for a Pois-
son process but proportional to the �nonflat� power spectrum
of the single process xn�t�.

The resolution of this apparent contradiction is that X�t� is
not a renewal process but a somewhat strange type of non-
renewal process. For N→� it has infinitesimally small cor-
relations for any lag between two intervals but these vanish-
ing correlations extend over an infinite number of lags and
therefore affect the spectral statistics. This can be seen as
follows. For the specific process xn�t� with PDF according to
Eq. �7�, the spectrum has a dip; in particular, for zero fre-
quency, the power spectrum is according to Eq. �8�

S��0� = r/2 �12�
while for a Poisson process it should be Spoi�0�=r.

For a general stationary stochastic point process, there is a
simple relation between the power spectrum at frequency
zero on the one hand and the ISI statistics on the other hand
�6�

S�0� = r3
Š�Ti − �Ti��2

‹
1 + 2�
k=1

�

�k� . �13�

In the limit of large N, we have seen that the ISIs of X�t� are
exponentially distributed and thus the prefactor of the brack-
ets is r �for a Poisson process we have Š�Ti− �Ti��2

‹=1/r2�.

To get the correct limit for the power spectrum at vanishing
frequency �i.e., NSX�0�=r /2�, we can only hope for the cor-
rection factor within the bracket. We have seen that for N
=100 we still get some weak correlations in the ISI sequence
and we argued that these correlations will become smaller
and smaller as N increases. However, when summing those
weak correlations over all lags for N=100 �compare the
black diamonds in Fig. 3�, we obtain indeed a finite contri-
bution which is ��k�− 1

4 . Inserting this into Eq. �13� gives
us NSX�0�=r /2 in agreement with our findings in the spectral
domain.

Correlations in the ISI sequence also have an impact on
the power spectrum at finite frequency and thus shape the
power spectrum such that it does not change for an increas-
ing number N of pooled spike trains. Again, the fact that the
correlations vanish at a specific lag but their cumulative ef-
fect over many lags is finite in the limit N→� is essential to
understand why a non-Poissonian �nonflat� power spectrum
for X�t� results.

We can learn a few more things from the partial sum
shown in Fig. 3. First of all, the sum does not converge for
all N to − 1

4 . This is plausible for the single renewal process
xn�t� itself �i.e., X�t� with N=1� for which the sum should
fluctuate around zero �which it does�. For N larger than 1 but
not too large �N=2,10�, the sum approaches a value larger
than − 1

4—in this case the prefactor in Eq. �13� will not be r
�the ISI density is not yet exponential� but smaller, such that
the product in Eq. �13� is again r /2.

The sum approaches its asymptotic value slower with in-
creasing N. This is in agreement with the decrease of the
interspike interval correlations at a given lag. With growing
N the correlations are distributed over more and more lags.
For N→� we end up with a process that has an infinitesi-
mally small correlation at a given lag but the correlations
extend over an infinite number of lags such that the sum of
the correlation coefficients is − 1

4 . This process certainly can-
not be easily recognized as a nonrenewal spike train. Our
results show that with a large but finite sample of data a
similar problem is already encountered for a rather modest
number of superposed processes �N=100�.

The thermodynamic limit N→� considered above has, of
course, no direct application to the neurobiological or other
problems involving superpositions of a limited number of
spike trains. It helps us, though, to understand that the non-
renewal character of X�t� is not a finite-size effect.

Consulting the classical literature on point processes
�3,6,7� �see also the recent study of the sum of correlated
trains �8��, we find that the original formulation of the con-

FIG. 3. Partial sum over the serial correlation coefficients �data
shown in Fig. 1� up to lag m for different numbers N of superposed
processes as indicated.
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vergence to a Poisson process always meant a Poisson pro-
cess local in time, i.e., in a small time window T. Put differ-
ently, if the single spike train xn�t� is sparse enough
compared to the time window T for which we consider the
superposition of point processes

T 	 r−1 �14�

then on this short time scale T, the process X�t� constitutes a
Poisson process. This amounts in the frequency domain to
ignoring the low frequency range �in our example, this was
0� f �2� where interesting non-Poissonian spectral features
�e.g., the dip in our example� can be found.

Alternatively, instead of looking only at small time scales,
the rate r could be rescaled with growing N such that the
above inequality becomes true for arbitrary time window T,
i.e., if one makes the spike trains xn�t� more and more sparse
as N increases. This has been done, for instance, in the clas-
sical proof �7� on the convergence of pooled spike trains to a
Poisson train. A simple way to achieve this is by choosing
the rate of the single process to be r→r /N or equivalently by
stretching the time axis �and keeping the rate constant�

X̂ = � xn�Nt� . �15�
Note that in this case we do not need the prefactor 1 /N to
keep the mean value of the spike train constant since the
spike rate of the superposition will equal r. The spectrum of
this process for xn�t� being the renewal process with PDF
given in Eq. �7� can be calculated

SX̂,� = r
1 −
2r2

4r2 + ��fN�2� . �16�

We see in Fig. 4 that indeed for this rescaled system the
spectral dip is moved to lower and lower frequencies as N
grows. In accordance with Eq. �16�, for N→� the spectrum
approaches a constant for all finite frequencies. This is
merely due to the fact that in this limit already the spectrum
of the single process becomes flat at arbitrary but finite fre-
quency.

We would like to point out that the limit in Eq. �15�, i.e.,
a scaling of the rate of the single process with 1/N or—at
fixed rate—the restriction to small time windows is not ap-
propriate for many applications of the superposition prob-
lem. In neural systems, for instance, the relevant time scale
of the output of a neuron which is driven by a superposition
of many input spike trains is the same as the time scale of the
single input generating neurons. Typically, this time scale
includes a few spikes 1/r at least and hence on the relevant

time scale the effective �superposed� spike train input to the
postsynaptic cell will not be a Poisson process.

Specifically, if the input neuron fires strongly enough such
that refractory effects come into play, its power spectrum
will exhibit a dip very similar to the one in our numerical
example �9�. This dip will still be seen in the superposition of
many such independent spike trains and thus also in the ef-
fective input of a postsynaptic neuron receiving these
stimuli. Worse situations can be thought of: the presynaptic
neurons may exhibit a strong periodic component—then the
power spectrum of xn�t� will show strong peaks that also
persist in the spectrum of the superposed process X�t�. In this
case the conclusion that the superposed train has Poissonian
statistics would be particularly misleading.

Our results also show that caution has to be used analyz-
ing spike trains both from experiments and theoretical mod-
els. What may seem to be close to a renewal or even a
Poissonian process from the view point of the ISI statistics,
may be a process with strong nonrenewal properties and pro-
nounced spectral features. This indicates that the ISI statis-
tics and spike train �in particular, spectral� statistics should
both be studied—neglecting one of them may give a wrong
picture of the process at hand.

Note added in proof. In an independent study �10�, Câteau
and Reyes discuss the non-Poissonian features of summed
spike trains and its consequences for signal propagation in
feedforward networks.
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FIG. 4. Power spectra of the superposed process X̂�t� for which
the rates of the single processes xn�t� scale with 1/N. The simula-
tion method is as in Fig. 2. For all simulation data, we averaged
over 102 random spectra and additionally over ten frequency bins;
each realization had a length of 220 time steps of size 
t=0.01. As
in Fig. 2, only a fraction of the simulation data �i.e., a diluted data
set� is shown for clarity.
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